猫眼影戏
猫眼影戏
柳志
手机检察
猫眼影戏记者 李辉 报道P6F9A2Y5R3B1T0V4X8W
选自oxen.ai 作者:Greg Schoeninger 编译:陈陈、泽南 RTX 3080 移动版能训练哪种大模型?本文为那些 GPU 资源有限时使用 GRPO 训练的开发者提供了名贵的指导。 自 DeepSeek-R1 宣布以来,群组相对战略优化(GRPO)因其有效性和易于训练而成为大型语言模型强化学习的热门话题。R1 论文展示了如何使用 GRPO 从遵循 LLM(DeepSeek-v3)的基本指令转变为推理模型(DeepSeek-R1)。 GRPO 是一种在线学习算法(online learning algorithm),它通过使用训练历程中由训练模型自身生成的数据来进行迭代革新。GRPO 的目标是最大化生成补全(completions)的优势函数(advantage),同时确保模型坚持在参考战略(reference policy)四周。 本文的目的是帮你节省一些时间,让你凭据硬件预算选择合适的模型巨细。在开始微调时,你必须做出的重要决定是选择模型巨细,以及你是执行完全微调照旧参数高效微调(PEFT)。 文章作者来自 AI 公司 Oxen.ai 的 CEO Greg Schoeninger。 原文链接:https://www.oxen.ai/blog/grpo-vram-requirements-for-the-gpu-poor 作者体现,他发明 trl 库中已经有一个易于使用的 GRPO 实现,便立刻开始了训练,使用的硬件是配备了 16GB 显存的 Nvidia GeForce RTX 3080 的小型条记本电脑。正如各人可能遇到的问题,作者发明示例代码中的参数设置导致了一个巨大的显存缺乏(OOM,out of memory )过失。 torchOutOfMemoryErrorCUDAoutof memoryTriedto allocate1.90GiBGPU0has a total capacity ofGiBof which1.28GiBisfreeIncludingnonPyTorchmemorythisprocess hasGiBmemoryinuseOfthe allocated memoryGiBisallocatedbyPyTorchand2.41GiBisreservedbyPyTorchbut unallocatedIfreserved but unallocated memoryislargetrysetting PYTORCH_CUDA_ALLOC_CONFexpandable_segmentsTrueto avoid fragmentationSeedocumentationforMemoryManagement//pytorch.org/docs/stable/notes/cuda.html#environment-variables) 实际使用情况 作者体现,他们进行了一系列实验,以确定训练种种巨细的模型所需的显存(VRAM)要求。参数数量从 5 亿到 140 亿不等,他们比较了权重的完全微调与参数高效微调(使用 LoRA),所有训练运行都在英伟达 H100 上完成,因此这里的 OOM 意味着 >80GB 的 VRAM。 在表格中,你可以找到 GSM8K 数据集上训练的前 100 步中的峰值内存使用情况。用于实验的模型是: 所有实验均使用 Shadeform 的 GPU 市场完成,因此每次实验只需要花费几美元 H100。 实验结果标明,内存需求随着模型巨细和训练方法的差别而显著变革。例如,全参数微调比 PEFT 需要更多的内存。 为什么 GRPO 对内存需求较高 这要从 GRPO 的原理说起,这是它的流程图。 GRPO 对内存需求较高的原因在于,其内部涉及多个模型,并且在训练数据中每个盘问会爆发多个输出。上图中的战略模型、参考模型和奖励模型各自都是一个需要进行推理的 LLM。(尽管从技术上讲,奖励模型可能不需要参数化,可以只是一个 Python 函数或正则表达式,但不影响 GRPO 对内存的高需求。) 为什么 8-Bit 优化和梯度检查点有助于减少内存占用? 通常来讲,训练一个大型语言模型需要在内存中存储三种主要类型的信息:模型参数、模型学习所需的梯度、优化器的跟踪数据。 对上述内容我们可以这样理解:如果模型的参数占用了 X 的空间,那么梯度也会占用约莫相同的空间。然后,像 AdamW 这样的优化器需要更多的空间,因为它们就像一个纪录员,跟踪最近的更新历史,以便更好地决定未来的优化。 为了减轻这种内存担负,通常接纳两种技术: 首先,可以使用像 AdamW 这样的 8-bit 优化器版本,它们能更高效地存储跟踪数据,同时仍坚持良好的性能 —— 类似于压缩照片可以节省空间,同时保存大部分图像质量;其次,使用梯度检查点技术,这就像在训练历程中拍摄快照,而不是纪录所有内容。虽然这会使逊з度减慢约 20-30%,但它显著减少了内存使用。 结合这些技术,纵然对 GPU 资源有限的人来说,也能够训练更大的模型。 代码示例 像 trl 这样的库已经开始支持 GRPO,使得微调由 transformers 组成的 LLM 变得很是简单。代码也很是简洁,只需将训练器替换为 GRPOTrainer 并界说一些奖励即可。GRPO 的最小代码量约莫只有 99 行,如果你使用的是像 meta-llama/Llama-3.2-1B-Instruct 这样的小型模型和像 openai/GSM8K 这样的数据集,可以非?焖俚仄舳。 trl 项目地点:https://github.com/huggingface/trl?ref=ghost.oxen.ai importtorchfromdatasetsimportload_datasetDatasetfromtransformersimportAutoTokenizerAutoModelForCausalLMfromtrlimportGRPOConfigGRPOTrainerimportreSYSTEM_PROMPTRespond in the following format:defextract_hash_answertextstrstrNoneif"####"notintextreturnNonereturntextsplit"####"1stripdefget_gsm8k_questionssplit"train"Datasetdataload_dataset'openai/gsm8k''main'splitdatadatamaplambda'prompt''role''system''content'SYSTEM_PROMPT},'role''user''content''question'],'answer'extract_hash_answer'answer'returndatadefextract_xml_answertextstrstranswertextsplit1answeranswersplit""0returnanswerstripdefformat_reward_funccompletionskwargslistfloat"""Reward function that checks if the completion has a specific format."""patternr"^\n\n$"\n.*?\n\n.*?\nresponsescompletion0"content"forcompletionincompletionsmatchesrematchpatternrforrinresponsesreturn0.5ifmatchelse0.0formatchinmatchesdefaccuracy_reward_funcpromptscompletionsanswerkwargslistfloat"""Reward function that extracts the answer from the xml tags and compares it to the correct answer."""responsescompletion0'content'forcompletionincompletionsextracted_responsesextract_xml_answerrforrinresponsesreturn2.0ifraelse0.0forrainzipextracted_responsesanswerdefmaindatasetget_gsm8k_questionsmodel_name"meta-llama/Llama-3.2-1B-Instruct"modelAutoModelForCausalLMfrom_pretrainedmodel_nametorch_dtypetorchbfloat16attn_implementation"flash_attention_2"device_mapNoneto"cuda"tokenizerAutoTokenizerfrom_pretrainedmodel_nametokenizerpad_tokentokenizereos_tokentraining_argsGRPOConfigoutput_dir"output"learning_rate5e-6adam_beta10.9adam_beta20.99weight_decay0.1warmup_ratio0.1lr_scheduler_type'cosine'logging_steps1bf16Trueper_device_train_batch_size1gradient_accumulation_steps4num_generations4max_prompt_length256max_completion_length786num_train_epochs1save_steps100save_total_limit1max_grad_norm0.1log_on_each_nodeFalsetrainerGRPOTrainermodelmodelprocessing_classtokenizerreward_funcsformat_reward_funcaccuracy_reward_func],argstraining_argstrain_datasetdatasettrainertrainif__name__"__main__"main Num Generations 有什么用 Num Generations 是一个超参数,它决定了我们将在训练数据中对每个盘问采样几多个补全。然而,这会显著增加 VRAM 的消耗。 目前有一个开放的 GitHub 问题,可能会资助解决内存瓶颈问题,可以参考如下链接 地点:https://github.com/huggingface/trl/issues/2709?ref=ghost.oxen.ai 关于 num_completions=8,16,64 (DeepSeekMath 论文使用的 64),作者体现,不必再次盘算上述所有值,而是使用了 1B 参数模型进行了测试,以显示内存增长。不过,作者照旧建议各人在内存瓶颈获得修复之前使用 num_generations=4,也能获得不错的性能。 影响 VRAM 的一些因素 要对所有影响显存(VRAM)使用的因素进行全面的超参数验证,需要进行大宗的实验。简单起见,这里只指出了需要注意的设置,以及实验中使用的具体数值。 batch_size=1,由于 GRPO 为每个盘问生成多个响应,batch size 会迅速失控。gradient_accumulation_steps=4,优化器是另一个占用大宗 VRAM 的地方。此参数决定了我们将存储的梯度以资助优化器进行其「爬山」历程。num_completions=4,DeepSeekMath 论文中使用了 64。这完全凌驾了有些人的盘算预算。max_prompt_length=256,如果你想训练模型拥有更大上下文的推理能力,将不得不增加 VRAM。GSM8K 的提示相对较小,适合此测试。max_completion_length=786,同样,由于盘算注意力的内存有限,推理链在这里受到限制。上下文或生成的 token 越多,需要的内存就越大。LoRA target_modules=["q_proj", "k_proj", "o_proj", "up_proj", "down_proj"] 在这方面可以实验几种差别的迭代。target_modules="all-linear" 是一种流行的方法,可以从你的 LoRA 中挤出最多的性能(就准确性而言)。 对 VRAM 使用的大概估算 如果你正在使用 FP16 精度进行训练,以下是一些简单的估算要领,可以资助你了解内存主要用在了哪些地方: 模型参数:每个参数占用 2 字节。参考模型参数:每个参数占用 2 字节。梯度:每个参数占用 2 字节。优化器状态:每个参数占用 8 字节。8 位优化器:每个参数占用 4 字节。PEFT:有助于减少梯度的显存占用。 最后是关于准确率的。作者完成了一个 10 亿参数的 Llama 3.2 模型的完整训练。在应用 GRPO 之前,该模型在保存测试集上抵达了约 19% 的准确率,而在经过一个训练周期后,模型的准确率飙升至约 40.5%。虽然这离 SOTA 水平还差得很远,但这展示了 GRPO 的强大潜力。
??时事1:A8直播破解版
??02月13日,【理响中国】深入理解“八八战略”的方法论,
人在世就要有希望,我们生长在这块土地上,也要有希望。美国作家欧亨利在他的小说《最后一片叶子》里讲了个故事:病房里,一个生命紧急的病人从房间里看见窗外的一棵树,在秋风中一片片地掉落下来。病人望着眼前的萧萧落叶,身体也随之每况愈下,一天不如一天。她说:“当树叶全部掉光时,我也就要死了。”一位老画家得知后,用彩笔画了一片叶脉青翠的树叶挂在树枝上。 最后一片叶子始终没掉下来。只因为生命中的这片绿,病人竟奇迹般地活了下来。 你看看,人生可以没有许多工具,却唯独不可没有希望。希望是人类生活的一项重要的价值。有希望之处,生命就生生不息!
,精品国产福利在线。??02月13日,重庆科研团队为馆藏文物虫霉病害防治出“妙招”,
最后,让我们把勉励的掌声、最自信的掌声送给自己!祝圆梦中考,马到乐成!也接待同学们“;丶铱纯础保
,www.草莓视频下载。,动漫丝袜h在线观看,成人av无码高清免费。??时事2:yuhaojj
??02月13日,指尖上的传承 西藏年货市场酥油花“绽放”,
如今,情况污染已经给我们的生命带来巨大的危害,给生存情况带来极大的破坏。我们经?吹奖ǖ酪蛩次廴,有人吃到水中的鱼而中毒;都会中因空气中的灰尘、车辆尾气、烟雾等造-们哮喘病比例的增大;严重污染更会带来生态情况的失衡,造成诸如沙尘暴、-雨、洪水、泥石流等自然灾害。正因为我们有这样的认识,越来越多的人加入到爱绿、护绿的环T硕。各人知道吗?3月12日是植树节,许多市民都积极地认养绿树,为环保贡献自己的一份力量。因此,作为小学生,作为都会的小主人,也要积极加入到环保行动中。
,四海a片在线,尿满不准流出来bl,综合在线视频。??02月13日,今年广东旅博会境外参展商数量将恢复至2019年水平,
二、增强消防知识的学习。
,正在播放嫩模艾栗栗3p,未成年拍拍拍,日韩亚欧美在线视频。??时事3:521最新地域网名
??02月13日,应急管理部开展烟花爆竹生产经营旺季安全专项检查,
然而,柳枝的速度太快了,化成一道绿色的光束,横贯西北,一扫而至。
,a毛片免费全部播放毛,班长今今视频,黄台app软件大全网页。??02月13日,【理响中国·青年学习班】 党纪学习教育需知行合一,
今天,为你们骄傲,也为你们祝福!未来,终将属于你们!
,舔舔舔干干干日日日插插插,友田真希上司,免费看俄罗斯一级A毛片。??时事4:小蓝gⅤ钙13
??02月13日,【图解】超2万亿元税费“红利”!支持科创和制造业持续向好,
“快,赶忙包扎!”石飞蛟大喝道。
,秋霞免费视频,人人搞人人操人人插,777米奇色狠狠888色狠狠。??02月13日,报告称近七成港青愿到大湾区内地城市发展,
这种心情,这种话语,让众人面面相觑,哭笑不得,而他脚下的两个大人物则差点气炸肺,倍感屈辱。
,成人无码一区二区三区网站,婷婷综合久久狠狠色成人网91,日本三级全黄少妇三级三级三级。【重庆高温:电网负荷创下历史新高】
【AI绘两会 | “新质生产力”,如何把“Made in China”重新定义新加坡学者:推动发展新质生产力,中国新能源产业前景广阔】
责编:尹娇娇
审核:胡朴安
责编:施瓦布
Copyright (C) 2001-2025 dzwww.com. All Rights Reserved
新闻信息效劳许可证 - 音像制品出书许可证 - 广播电视节目制作经营许可证 - 网络视听许可证 - 网络文化经营许可证
山东省互联网传媒集团主办 联系电话:0531-85193202 违法不良信息举报电话:0531-85196540
鲁ICP备09023866号-1 鲁公网安备 37010202000111号
Copyright (C) 2001-2025 Dzwww 鲁ICP备09023866号-1